সৃজনশীল : সূচক : অনুশীলনী ৪.১ – সমস্যা ২১

সৃজনশীল : সূচক : অনুশীলনী ৪.১ - সমস্যা ২১

 ২১  $P=x^a$, $Q=x^b$ এবং $R=x^c$

  • (ক) $P^{bc}\cdot Q^{-ca}$ এর মান নির্ণয় কর।
  • (খ) $\left(\frac{P}{Q}\right)^{a+b}\times \left(\frac{Q}{R}\right)^{b+c} \div2\left(RP\right)^{a-c}$
  • (গ) দেখাও যে, $\left(\frac{P}{Q}\right)^{a^2+ab+b^2}\times \left(\frac{Q}{R}\right)^{b^2+bc+c^2}\times \left(\frac{R}{P}\right)^{c^2+ca+a^2}=1$

দেওয়া আছে,
$P=x^a$

$Q=x^b$ এবং

$R=x^c$

(ক) নং এর সমাধান

প্রদত্ত রাশি,
$P^{bc}\cdot Q^{-ca}$

$=\left(X^a\right)^{bc}\cdot \left(X^b\right)^{-ca}$

$=X^{abc}\cdot X^{-abc}$

$=X^{abc+(-abc)}$

$=X^{abc-abc}$

$=X^{0}$

$=1$ [Answer]


(খ) নং এর সমাধান

প্রদত্ত রাশি,
$\left(\frac{P}{Q}\right)^{a+b}\times \left(\frac{Q}{R}\right)^{b+c} \div2\left(RP\right)^{a-c}$

$=\left(\frac{X^{a}}{X^{b}}\right)^{a+b}\times\left(\frac{X^{b}}{X^{c}}\right)^{b+c}\div2\left(X^{c}X^{a}\right)^{a-c}$

$=\left(X^{a-b}\right)^{a+b}\times\left(X^{b-c}\right)^{b+c}\div2\left(X^{c+a}\right)^{a-c}$

$=X^{\left(a-b\right)\left(a+b\right)}\times X^{\left(b-c\right)\left(b+c\right)}\div2X^{\left(a+c\right)\left(a-c\right)}$

$=X^{\left(a^2-b^{b}\right)}\times X^{\left(b^2-c^2\right)}\div2X^{\left(a^2-c^{c}\right)}$

$=X^{\left(a^2-b^{b}\right)+\left(b^2-c^2\right)}\div2X^{\left(a^2-c^{c}\right)}$

$=X^{a^2-b^{b}+b^2-c^2}\div2X^{\left(a^2-c^{c}\right)}$

$=X^{a^2-c^2}\div2X^{a^2-c^{c}}$

$=X^{a^2-c^2}\times\frac{1}{2X^{a^2-c^{c}}}$

$=\frac12$ [Answer]


(গ) নং এর সমাধান

Left Hand Side,
$\left(\frac{P}{Q}\right)^{a^2+ab+b^2}\times \left(\frac{Q}{R}\right)^{b^2+bc+c^2}\times \left(\frac{R}{P}\right)^{c^2+ca+a^2}$

$=\left(\frac{X^{a}}{X^{b}}\right)^{a^2+ab+b^2}\times\left(\frac{X^{b}}{X^{c}}\right)^{b^2+bc+c^2}\times\left(\frac{X^{c}}{X^{a}}\right)^{c^2+ca+a^2}$

$=\left(X^{a-b}\right)^{a^2+ab+b^2}\times\left(X^{b-c}\right)^{b^2+bc+c^2}\times\left(X^{c-a}\right)^{c^2+ca+a^2}$

$=X^{\left(a-b\right)\left(a^3+ab+b^2\right)}\times X^{\left(b-c\right)\left(b^2+bc+c^2\right)}\times X^{\left(c-a\right)\left(c^2+ca+a^2\right)}$

$=X^{a^3-b^3}\times X^{b^3-c^3}\times X^{c^3-a^3}$

$=X^{a^3-b^3+b^3-c^3+c^3-a^3}$

$=X^0$

$=1$

$=$ Right Hand Side [Showed]

Click to rate this post!
[Total: 1 Average: 5]

Leave a Reply

Your email address will not be published. Required fields are marked *

You may also like